
N90-16447

Dynamically allocating sets of fine-gralned processors

to running computations

David Middleton

ICASE, NASA Langley Research Center

Hampton, VA 23665.

Abstract

We explore an approach to using general pur-

pose parallel computers which involves mapping

hardware resources onto computations instead

of mapplng computations onto hardware. Prob-

lems such as processor allocation, task schedul-

ing and load balancing, which have traditionally

proven to be challenging, change significantly

under this approach and may become amenable

to new attacks. We describe the implementation

of this approach used by the FFP Machine whose

computation and communication resources are

repeatedly partitioned into disjoint groups that
match the needs of available tasks from moment

to moment. Several consequences of this system
are examined.

Keywords: reconfigurable computers, partitionable computers,

variable granularity, fine granularity.

a hardware design with a more flexible structure, which

may reduce mismatches between the structures of the

hardware and of the various computation stages.

Operations such as program decomposition, task

scheduling and load balancing, which have traditionally

been both essential for good performance and highly

sensitive to several disparate parameters, heavily reflect

the "mapping computations onto hardware" philosophy.

The _mapping hardware onto computation" view ought

to recast these problems drastically, opening the way to

new methods for solving them.

As part of this approach, the FFP Machine imple-

ments the concept of a virtual machine, defined as an

abstract entity created to perform a single task and

consisting of many processing elements connected by

a tightly-coupled message-passing combining network.

The FFP Machine partitions its hardware elements into

disjoint resource groups such that each virtual machine

is provided with one entire resource group dedicated to

its progress.

Mapping hardware resources
onto computation structures

A standard part of parallel computation is mapping

the computations onto the given structure of the hard-

ware resources. The FFP Machine supports an alter-

native approach of mapping hardware resources onto
the structure of running computations. We describe the

method it uses and discuss some of the consequences of

this approach.

The motivation for this inversion is that, although

computations are more mutable than hardware, they

are also highly dynamic in their structure. For example,

an inner product computation begins with many small

operations, the individual multiplications, which might

be performed simultaneously given a fine-grained hard-

ware structure. This is followed by a single, potentially

large, summation (which may have a finer structure)

better suited to more coarsely grained hardware. As a

result of computations' highly variable structure, a fixed

hardware structure will likely encounter difficulties im-

plementing some of their stages efficiently. The philos-

ophy of mapping hardware onto computations leads to

Properties of Partitioning

The FFP Machine is a reconfigurable fine-grained

MIMD computer consisting of a linearly ordered set

of processors which communicate through a tree-

structured network of communication nodes. Each re-

source groups created by partitioning consists of a con-

tiguous set of the processors connected by a tree of mes-

sage processors embedded in the physical communica-

tion network. The following properties of the partition-

ing process are noteworthy.

Partitioning is very fast, yet still provides the flexi-

bility usually associated with late binding.

From the innermost reduction rule of Backus's FP

language [1], computations are defined as parenthe-

sized expressions, with innermost parentheses delim-

iting computations that can proceed immediately.

The expressions reside in the processors and resource

groups are constructed by creating "breaks" where

parentheses occur. Partitioning involves a single

wave of messages that passes up through the tree

network. The messages contain three bits; one in-

dicates the presence of parentheses in the subtree

CH2649-2/89/0000/0191501.00 © 1988 IEEE

191

andissufficientforpartitioning; the other two are

used to determine which resource groups are delim-

ited by a balanced pair of parentheses and so con-

tain a virtual machine that can immediately proceed

with its task. Each tree node calculates a logical

sum, two logical products and sets its three commu-

nication channel switches. Figure 1 shows the in-

ternal structure of a communication node with the

channel switches and the message processor which

is allocated to one of the resource groups. Figure 2,

Color Plate I (p. 693), demonstrates the result of par-

titioning, emphasizing the distinction between the

physical tree structure and the tree structures of
the resource groups. Partitioning takes logarithmic

time, although with additional interlocks, constant

time can be achieved through pipelining because the

lower portions of the resource groups can be used

while their upper portions are still being configured.

Because of its simplicity, partitioning should add llt-

tie overhead to machine operation and so may be

performed frequently.

t

Figure 1. Communication node

• Apart from a virtual machine's determination of the

pattern of parentheses it leaves in its result, no plan-

ning is required by either compiler or programmer

to control the creation, activation or deletion of vir-
tual machines. The size, placement and lifetime of

the virtual machines is completely determined by

the partitioning process, according to the positions

of parentheses. These arise as the results of immedi-

ately preceding virtual machines without any prior

calculation or storage of information.

• There are no size or alignment constraints placed

on the virtual machines. Most notably, this avoids

wasting resources through fragmentation, so, for ex-

ample, a subtree of the physical machine with a

thousand processors can support without help two
virtual machines, one needing six hundred proces-

sors and the other, four hundred. (As a conse-

quence of the non-alignment, the average depth of

a virtual machine with n processors is (lg(ct) + 2.0)

rather than Jig(n)].) Virtual machines are variably-

grained: their size can be tailored to reflect closely

their individual needs without regard for other vir-

tual machines. In particular, the size of a virtual

machine relates closely to the size of its operands;

identical functions applied to different data will gen-

erally be performed by different sized virtual ma-
chines.

• Resource groups are constrained to contain non-

overlapping groups of processors. This imposed lo-

callty provides an upper bound on the number of

resource groups (three) that a communication node

may be required to support, allowing the design of

the communication node to provide dedicated hard-

ware.

No contention or interference arises between com-

munication operations occurring in different virtual

machines; however, no communication can occur ei-
ther. There does remain a communication bottle-

neck local to each resource group due to its tree
structure. A richer interconnection in each resource

group could be provided were the interconnection

structure of the FFP Machine similarly enhanced

[3, 51

• Virtual machines can grow during their operation,

with the communication network acquiring addi-

tional processors in a consistent fashion. This

growth is achieved by shifting the contents of the

processors so that more of them separate the pair

holding the delimiting parentheses. In the current

design, this storage management takes linear time

and is the primary situation where one virtual ma-

chine can affect the operation of others, by poten-

tially requiring that the contents of neighboring ma-

chines' processors also be shifted to make room.

• Multiple levels of parallelism are exploited. Concur-

rent virtual machines execute simultaneously, each

internally exploiting fine-grained parallelism. (The

term MSIMD has been used to describe parallel

computers in which multiple SIMD machines exe-

cute simultaneously; by comparison, this might be

described as an MMIMD machine).

• The message processor networks in the resource

groups support combining operations without re-

quiring costly associative memories in the switch

nodes [2l. Each resource group has a tightly-coupled

circuit-switched network of ALUs which can perform

such cumulative operations (possibly within groups

[7]) at hardware speeds rather than at the proces-

sors' instruction speeds. Cumulative operations pro-

vide a powerful mechanism capable of performing

data permutations and parsing operations useful to

the FFP Machine, without suffering from the bot-

tleneck in a resource group. Other implementations

192

of combining networks in general purpose machines

have resulted in switch nodes that are too costly,

probably due to the range of possibilities that the

nodes must handle. By assuming that any given

task involves closely coordinated actions by the pro-
cessors, the complexity of the communication nodes

is greatly reduced.

The potentials of flexible virtual
machines

These virtual machines as supported by the resource

groups defined above have a flexibility that provides op-
portunities for accomplishing tasks in new ways. Be-

cause partitioning creates virtual machines so cheaply,

a task can profitably use many of them. In each of

its stages, the resources already allocated to a task can
be restructured into a different set of groups, so that,

for example, stages that exhibit fine-grained parallelism

can use many disjoint machines operating simultane-

ously. The following list demonstrates some of the ways

that this flexibility can be used.

• It is possible to alternate between virtual machines

that allow long-distance communication within the
task, with the attendant communication bottleneck,

and isolated virtual machines performing localized

operations that communicate with no or greatly re-
duced contention.

• The TRAC machine could avoid explicit communi-

cation by reconnecting memory banks to different

processors and so transferring data implicitly [4].
In an analogous fashion, some explicit communica-

tion in the FFP Machine can be avoided by recon-

figuring the processors holding data into different

resource groups, so that they belong to different vir-
tual machines at different times. This is the stan-

dard method for passing results between functions

when executing FFP programs.

• Computations structured as pipelines, or more gen-

erally, data-flow graphs (possibly with complex com-

putations at the nodes) can be implemented by al-

ternating between a set of virtual machines special-

ized to the individual nodes, and a set of virtual

machines that perform the communication along the

arcs of the graphs.

These uses, together with others, can be combined

freely depending on the particulars of the task. We

present one abbreviated example to show the possibili-

ties [8].

OPS5 is a Production System language. When spec-

ified patterns can be found among subsets of known

facts, corresponding actions are performed. Finding

such patterns consumes a large majority of the process-

ing time in OPS programs. The RETE algorithm, the

best current technique for matching facts to the rule

patterns, uses a discrimination network in which the

nodes store partial matches found so far and compare

them with new partial matches that arrive along their

input arcs.

The discrimination network can be naturally imple-

mented using virtual machines, as shown in Figure 2.
A node has four parts including the local memory for

storing partial matches and input and output buffer ar-

eas, each occupying as many processors as necessary.

Pattern matching in each node uses a three stage cycle.

With the node organized as a single virtual machine, a

new pattern is broadcast from the input buffer to the

processors holding partial matches. In the second stage,

these processors are divided into many small machines

each of which compares the new pattern with one pre-

vious partial match. In the third stage, successful com-

parisons cause a combined match to be placed in the

output buffer.

Interleaved with the operation of virtual machines

corresponding to nodes in the discrimination network is

a set of machines corresponding the network arcs, which

transmit successful matches from output areas of some

nodes to the input areas of their descendants.

Figure 2 shows a discrimination network and its

mapping as a hierarchy onto the linear array of pro-

cessors. The graph is laid out as a series of nodes, each

having four parts; individual processors within those

parts are too small to be seen. Beneath the linear ar-

ray of processors, bars show the groupings of processors

into virtual machines for different phases in the match-

ing operation. The first three rows correspond to the

stages of the network node virtual machines and the

last row corresponds to those for the arcs.

The arcs being able to send simultaneously relies on
two facts: the discrimination network was created as a

skew tree, and the input and output buffers could be

placed within each node so as not to interfere. These

choices display an important part of efficiently using vir-

tual machines. Given the _logic in memory" and asso-

ciative processing style of operation [6], it is less impor-
tant that data be organized with regard to access meth-

ods that reflect sequential styles of algorithms. Instead,

the data need to be organized so as to provide locality,
in some sense, at appropriate stages in the tasks.

The ability of virtual machines to have different sizes
depending on the amount of data is particularly impor-

tant since the memories in the discrimination network

nodes display a high variance with different input val-
ues.

Conclusions

The approach of mapping hardware resources onto

computation structures, rather than vice versa, provides

many novel opportunities for performing tasks. The
implementation of this philosophy embodied in the FFP

Machine has a significant affect on the way in which

computations are viewed and organized.

193

I{ A B [E [C F I D G II I II Illl Ill I Ill Illll II I1

llillll llll llll II lOlll go llll

i lililiU i _ iSlil _

• illilimiilil

broadcast a new pattern inside each node

compare new pattern with locally stored ones

collect successful matches

transfer results as new tokens to other nodes

Figure 2. Virtual machine implementation of OPS5 discrimination network

Programming effort concentrates on arranging that

data are organized to be clustered when they are com-

bined or otherwise manipulated in a task. The "logic in

memory" character by which the data reside in proces-

sors removes the requirement that the data be sorted

and stored in structures that reflect the physical prob-

lem. "Associative programming" techniques allow data

to be stored "out of order", in some sense, but with

descriptors that determine when and how the data par-

ticipate in operations [6].

Tasks are defined syntactically. The programmer's

control over scheduling concentrates on creating and

deleting the parentheses that delimit virtual machines.

Barrier synchronization derives naturally from the par-

titioning mechanism; virtual machines delimited by

non-innermost parentheses do not begin operation un-

til those inner computations have completed and the

parentheses.are removed. Other synchronization and

scheduling mechanisms can be created with little addi-
tional effort.

References

[1} J. Backus, "Can programming be liberated from the

yon Neumann style? A functional style and its al-

gebra of programs", Communications of the ACM,

Volume 21 No. 8, pp. 613-641, August 1978.

[2] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P.
McAuliffe_ L. Rudolph and M. Snir, "The NYU U1-

tracomputer - Designing an MIMD Shared Memory

Parallel Computer", IEEE Transactions on Com-

puters, Volume C32 No. 2, pp. 175-189, February

1983.

[3] J.N. Kellman "Parallel Execution of Functional Pro-

grams" Master's Thesis. University of CMifornia at

Los Angeles. 1983.

[4] G.J. Lipovski and A. Tripathi, "A reconfigurable

varistructure array processor", Proceedings of the
1977 International Conference on Parallel Process-

ing, pp. 165-174, August 1977.

[5] D.A. Plaisted (a) "An Architecture for Fast Data

Movement in the FFP Machine _ Proceedings of

the 1985 Conference on Functional Programming

Languages and Computer Architecture. Springer-

Verlag, LNCS 201. pp. 147-163. September 1985.

Nancy, France.

[6] J.L. Potter, _Programming the MPP', pp. 218-229,

in "The Massively Parallel Processor", edited by

J.L. Potter, MIT Press, 1985.

[7] J.T. Schwartz, "Ultracomputers', AGM Transac-

tions on Programming Languages and Systems, Vol-

ume 2 No. 4, pp. 484-521, October 1980.

[8] B.T. Smith and D. Middleton, "Exploiting fine-

grained parallelism in Production Systems", Pro-

ceedings of the 7th Biennial Conference of the Cana-

dian Society for Computational Studies of Intelli-

gence, pp. 262-270, edited by R. Goebel, Edmon-

ton, Alberta, Canada, June 6-10 1988.

194

